Life of an Oracle I/O: tracing logical and physical I/O with systemtap

Topic: This post is about tracing logical and physical reads in Oracle using SystemTap. You find here a few examples illustrating the main mechanisms used by Oracle to performo physical and logical I/O and you learn how to build SystemTap scripts to further explore and troubleshoot Oracle I/O.

 

Introduction: Performing input/output from and to the storage media, i.e. physical I/O, is one of the critical tasks underlying all database engines. When accessing data stored in RAM from the database cache we can talk of logical I/O. Physical I/O is performed by the database using system calls to the O/S kernel. The type of system calls used depends on database settings, the O/S and the type of storage. Logical I/O is performed by the database processes using Oracle kernel functions. Oracle instruments the timing of physical I/O calls with the wait event interface, while logical I/O time is generically accounted for as CPU time. Tracing I/O operations performed by Oracle processes together with the details provided by the Oracle wait event interface is a powerful technique to investigate Oracle I/O internals. With the help of a few real-life examples we investigate what the mechanisms are that Oracle uses to access storage, how the I/O operations correlate to the wait event interface and what the meaning of the wait event time is for the most common wait events associated with I/O.

 

Building the tracing tool: Investigations of what Oracle and the O/S do when an I/O operation is performed require specialized tools. Systemtap is a dynamic tracing tool specific to Linux that allows tracing of both the O/S and the Oracle functions (Linux kernel functions, system calls and Oracle database kernel functions). In the following you can find a description of a systemtap script that can be used to trace Oracle logical and physical I/O: it is composed of probes that can attach to the function calls of interest and can read function parameters, memory and CPU registers.

Systemtap requires relatively recent kernels to be able to probe userspace: either the utrace or uprobe_events functionality needs to be available. This is the case for example of RHEL/OL 6.5 and higher but not with RHEL 5. Moreover for tracing system calls the kernel debuginfo package needs to be installed.

More details on this and on how to build a lab environment can be found in this article. The script that we use in this blog post to trace Oracle logical and physical I/O and wait event interface is: trace_oracle_logicalio_wait_events_physicalio_12102.stp (for Oracle 12.1.0.2). A version for 11.2.0.4 is also available: trace_oracle_logicalio_wait_events_physicalio_11204.stp Before moving to the examples and studies of Oracle I/O I would like to review the three main parts of the script: tracing physical I/O, logical I/O and wait events.

 

Tracing physical I/O: Oracle ultimately issues system calls to execute I/O operations. The type of calls depend on database settings, the O/S type and the type of storage. In this article you can find examples to Oracle on Linux using ASM storage on block devices. Notably direct NFS, local storage and ASM with asmlib are left out and possibly addressed in future studies. System calls can be traced using the strace(1) utility in Linux too. However, in this article you can see how SystemTap probes can be built to gather information on the system calls of interest: pread, pwrite, io_submit and io_getevents. Additional useful SystemTap probes to the underlying block I/O layer are: ioblock.request, ioblock_trace.request and ioblock.end (note, these are not system calls, but rather tracepoints for function calls inside the Linux kernel).

 

Probe name

Purpose

Selected parameters

syscall.pread/pwrite

synchronous I/O: read/write from/to a file descriptor

fd (file descriptor number), offset, count. 

return value: bytes read/written

syscall.io_submit

asynchronous I/O: submit blocks for processing

nr (number of I/O). For each I/O: file descriptor, offset, bytes, opcode (0 for read, 1 for write)

return value: number of I/O operations performed

syscall.io_getevents

asynchronous I/O: read events from the completion queue

min_nr (min number of I/Os to read), timeout for event waiting.

Return value: number of I/O reaped, For each I/O: file descriptor, offset, bytes

ioblock.request, ioblock_trace.request

I/O requests sent to the block device interface kernel layer

devname, sector, size, rw, block_io structure address

ioblock.end

return from the block device interface kernel layer

devname, sector, rw, block_io structure address

 

Note added, August 2015: Systemtap probes on kernel.trace("block_rq_issue") and kernel.trace("block_rq_complete") can also be used to investigate the block I/O interface with the added advantage of not requiring kernel debuginfo. You can find examples of such probes in the page with download material or on GitHub.

 

Tracing logical I/O: This is about providing the history and details of the logical I/O operations, which is when Oracle reads a data block from memory (buffer cache). Logical I/O operations are a super-set of physical I/O: if Oracle does not find data in memory (buffer cache) it will issue a physical read. You can find a few examples of this mechanism in action later in this post.

Oracle instrumentation provides extensive information on logical reads in several V$ views, such as V$SYSSTAT, V$SESSTAT, V$SYSMETRIC. Also logical read data is available from sql*plus with "set autotrace on" and with tkprof reports of 10046 traces. Logical reads come in two main "flavors": consistent reads and current reads. Oracle will use consistent reads when reading data at a given system change number SCN, current reads are used when performing DML operations on the block. Consistent reads can be traced in Oracle using the events 10200 and 10201. More details can be found in the presentation by Julian Dyke on logical I/O.

In this article we show how to trace logical I/O by attaching SystemTap probes to a set of Oracle kernel functions. The role of functions kcbgtcr and kcbgcur for tracing consistent and current reads has already been discussed by Alexander Anokhin in his excellent blog articles on Dtrace LIO. More recently I have investigated this topic and found useful to also trace the functions kcbzib, kcbzgb, kcbzvb.

A summary of the main finding on these functions is in the table here below. Note: the expressions %rdi, %rsi, %r8 indicate the values of the corresponding CPU registers. With SystemTap the register value can be read with the function register, example: register("rdi"). The CPU registers are used to extract the function call arguments. Systemtap does not provide the function call arguments when there are no debug symbols available for the executable. Notably the calling conventions for x86-64 as documented in  www.x86-64.org/documentation/abi.pdf state that the integer parameters for a function call are available in the following registers (in order): %rdi, %rsi, %rdx, %rcx, %r8 and %r9.

 

 

Function name

Purpose

Selected parameters

kcbgtcr

Kernel Cache Buffers Get Consistent Read

used for consistent reads

tbs#=user_int32(%rdi) 

rel file n#= user_int32(%rdi+4) >> 22 & 0x003FFFFF 

block#=user_int32(%rdi+4) & 0x003FFFFF

data_object_id#=user_int32(%rdi+8)

object_id#=user_int32(%rdi+12)

 

Note: for bigfile tablespaces:

block#=user_int32(%rdi+4)

kcbgcur

Kernel Cache Buffers Current

used for current reads

tbs#=user_int32(%rdi)

rel file n#= user_int32(%rdi+4) >> 22 & 0x003FFFFF

block#=user_int32(%rdi+4) & 0x003FFFFF

data_object_id#=user_int32(%rdi+8)

object_id#=user_int32(%rdi+12)

 

Note: for bigfile tablespaces:

block#=user_int32(%rdi+4)

kcbzib

kcbZIB should stand for: Z (kcbz.o is a module for physical IO helper functions), IB: Input Buffer

Oracle will perform physical read(s) into the buffer cache

 

 

kcbzgb

The suffix GB in kcbZGB should stand for: Get (space for) Buffer

 

Oracle allocates space in the buffer cache for a given block (typically before I/O operations). 

 

tbs n#=%rsi,

rel file n#=%rdx >> 22 & 0x003FFFFF

block#=%rdx & 0x003FFFFF

data_object_id#=%r8

object_id#=%r9

 

Note: for bigfile tablespaces:

block#=%rdx

kcbzvb

Invoked after Oracle has read a given block

It is part of the call chain for checking blocks governed by the db_block_checking parameter. Name guess: Kernel cache buffer verify block. Thanks to @FritsHoogland for pointing this out.

 

This function is used both for reads in the buffer cache and for direct reads

 

tbs n#=%rsi, 

rel file n#=%rdx >> 22 & 0x003FFFFF,

block#=%rdx & 0x003FFFFF

data_object_id=user_int32(%rdi+24)

Note: for bigfile tablespaces:

block#=%rdx

 

Note: as I write this only uprobes for kernel versions 3.10 or higher support return probes for userspace functions. Therefore this functionality is not available with RHEL or OL 6.x, but it is available on RHEL 7.x kernels.

 

Tracing wait events: The wait event interface is probably one of the best features in Oracle performance tuning as it provides a quantitative method to identify performance issues and bottlenecks. Cary Millsap has published inspiring work on the subject.

For our purposes it suffices to say that wait events are instrumentation points where selected Oracle kernel actions are timed. In particular Oracle will time the start and end calls to most physical I/O operations, therefore providing a good way to understand how much time is spent during physical I/O (some limitations of this mechanism are discussed later in this post). There are also limitations to using the wait event interface to study I/O latency, in particular in the examples section you can find some interesting challenges related to timing asynchronous I/O events.

Wait event tracing is typically activated in Oracle using the 10046 event or with by calling DBMS_MONITOR.SESSION_TRACE_ENABLE. In this article we get the wait event details by attaching SystemTap probes to the relevant Oracle kernel functions and in particular to  kskthbwt and kskthewt to gather information respectively at the start and at the end of each wait event. Enabling wait event tracing using event 10046 at level 8 and other methods is a way to externalize the wait event timing information (as well as other SQL processing details), not to enable the wait information. This is done using the database parameter TIMED_STATISTICS, and is and should be set to TRUE in modern Oracle databases. One key piece of information that the Oracle kernel functions kskthbwt and kskthewt give us is a pointer into the X$KSUSE fixed table (or rather to the underlying memory structure in the SGA), which is the underlying table to V$SESSION and therefore opens the road to correlate the wait event with many useful information on session executing the SQL. Resolving the pointer in register r13 to the base value of X$KSUSE and computing the offset for the fields of interest requires additional work, this is described in a previous article (see also the script: ksuse_find_offsets.sql).

 

Function name

Purpose

Selected parameters

kskthbwt

Kernel service Kompile thread begin wait.

This function is called at the start of an Oracle wait event.

kslwtbctx is its parent function call and marks the start of a wait event. 

 

Useful information when probing the function:
register r13 -> points into X$KSUSE (V$SESSION) SGA segmented array
register rsi -> timestamp of the beginning of the wait (in microseconds)
register rdx -> wait event number

kskthewt

Kernel service Kompile thread end wait.

This function is called at the end of an Oracle wait event.

kslwtectx is its parent function call marking the end of a wait event.

The suffix "ewt" most likely stands for "end wait".

Useful information when probing the function:
register r13 -> points into X$KSUSE (V$SESSION) SGA segmented array
register rdi -> timestamp of the beginning of the wait (in microseconds)
register rsi -> wait event number

 

Running the script:

Below you find a few examples of traces for common Oracle I/O access patterns. The traces have been obtained by runnig  stap -v trace_oracle_logicalio_wait_events_physicalio_12102.stp -x <pid> where <pid> is the process id of the session being traced. The output is piped into sed -f eventsname.sed, which takes care of translating the event number with the associated event name. The file eventsname.sed is generated by running the script eventsname.sql. It’s important to rerun the script to generate the event names before testing, because the wait event numbers can change without any warning, for example by migrations to newer versions, but potentially also by applying a patch. The system used to collect the traces on the following examples is Oracle 12.1.0.2 running on OEL 7.0 with UEK3 under Virtualbox.

 

 

Example 1: single-block random reads

 

This example is about single block (random) reads. This access path to data is very important for many OLTP workloads as it is used for table access via a index key. In Figure 1 here below you can see a snippet of a trace file for a query of the type: select <col_list> from table <tab> where <indexed_col>=<val>.

 

Figure 1: Oracle single-block random read and db file sequential read wait event

 

 

The key points are:

  • Oracle issues a logical read on one of the blocks needed to to retrieve data for the SQL of this example
    • additional details are provided in the logical read call where we can see that Oracle wants to read block#=2505675 from tbs#=7 and belonging to obj#=32174 (which is the table segment in this example)
  • The block is not found the cache so a new block is allocated in the buffer cache and a physical read is initiated
  • The database marks the start of a wait event for 'db file sequential read'
  • The physical read request for a block becomes a pread call to the O/S
    • The IO request enters the kernel via a system call, any function encountered after the system call is a kernel function (such as ioblock.request), until the system call returns, and thus gets back to userland, which means the Oracle executable in this case.
  • This read call is passed on to the block I/O interface to read 8192 bytes (1 database block), from the block device device (/dev/sdl in the example of Figure 1)
  • The block interface and then the OS call return the read data to the Oracle kernel
  • The Oracle wait interface marks the end of the wait and computes the elapsed time
    • the wait event is  'db file sequential read' and the parameters are: p1 is the file number, p2 in the block number, p3 is the number of blocks read (1 block).
    • from the timestamp values in the trace you can see that the duration of the db file sequential read wait is dominated by the time it took to do the pread call, with a small overhead (note also that the overhead could have been more significant if we had high CPU utilization on the DB server, for example because of workload from other Oracle sessions)
  • We can conclude that in this example the measured wait time for db file sequential read corresponds to physical read latency.

 

Example 2: sequential I/O into the buffer cache with synchronous I/O

 

This example is about multi-block reads into the cache. This is an access path that is used for example when Oracle performs a full table scan. There are multiple ways in which Oracle can access the storage to perform full scans, in this example you see the case when Oracle uses synchronous I/O (i.e. the pread call) to perform O/S reads, examples 3 and 4 cover sequential reads with asynchronous I/O. In Figure 2 here below you can see a snippet from tracing the workload of a query of the type: select <col_list> from table <tab>, a full scan of <tab> is performed by Oracle.

 

Figure 2: Oracle sequential I/O in a case where reads are performed using pread O/S calls

 

 

 

The key points of the trace in Figure 2:

  • Oracle issues a consistent read for tbs#=7 block#=2621443 and finds it in the cache
  • Oracle issues a consistent read for the next block, does not find it in the cache so prepares to read a list of block from storage in one physical read. The list is 124-blocks long (it has shortened in this example for clarity)
  • The databases marks the start of a wait event for "db file scattered read"
  • The physical read requests become a single pread call to the OS for 1015808 bytes (124 blocks)
  • This request moves down the I/O chain to the block I/O interfaces which splits it into 2 reads from the underlying block device, as in the system used for tests the maximum size of I/O is 524288 bytes.
    • As investigated by Frits Hoogland: the submitted I/O request lands in the IO scheduler scattered/gather list, where it is broken down to the IO size as advertised by the block device.
  • The I/Os are completed by the block I/O interface
  • The pread call returns
  • The wait event interface times the end of the wait
    • The wait event is db file scattered read and the parameters are: p1 is the file number, p2 in the block number, p3 is the number of blocks.
    • From the timestamp values in the trace you can see that the duration of the db file scattered read wait is mostly accounted for by the time it took to do the pread call, with a small overhead 
  • From the trace of calls to the Oracle kernel function kcbzvb we get additional confirmation of the blocks that have been read
  • We can conclude that in this example the wait time for db file scattered read corresponds to I/O latency.

Example 3: sequential I/O into the buffer cache with asynchronous I/O O/S calls

 

In Figure 3 you can see a snippet from the trace of  the SQL: select <col_list> from table <tab>, where Oracle performs a full scan of table <tab>. This is the same query that was used for Example 2 above, the difference from that case is that the trace in Figure 3 has been taken at a later time in the execution of the query, when the Oracle process switched from using synchronous I/O with pread calls to using the asynchronous  I/O interface. Asynchronous I/O is implemented in Linux with io_submit and io_getevents calls, to send the I/O requests and then to reap the results. Although Oracle uses the asynchronous interface to perform read operations in this example, the final result is very similar to what described in Example 2 (i.e. with synchronous I/O): the Oracle wait event is the same, "db file scattered read", the reads are also performed into the buffer cache and I/Os are reaped with blocking calls, therefore making the process effectively synchronous. A more 'aggressive use' of the asynchronous I/O interface by Oracle aimed is found in Oracle with direct reads, that are discussed in Example 4 below.

 

Figure 3: Oracle performing sequential I/O reads into the buffer cache using asynchronous I/O calls

 

 

 

The key points are:

  • Oracle issues a consistent read for tbs#=7 block#=2522760, it does not find it in the cache so prepares to read a list of blocks into the buffer cache. The list is 128-blocks long and shortened in this example
  • The databases marks the start of a wait event for "db file scattered read"
  • The physical read requests are passed on to the OS as a call to io_submit with 2 requests for a total of 1MB in size (that is 128 blocks): the first request is for a read (opcode 0) of 65536 bytes, the second for a read operation of 983040 bytes (that is 1MB -64 KB)
  • These requests are passed to the block I/O interface which splits the largest request into 2 reads from the underlying block device (/dev/sdi in this example). The read of 64KB is passed on unchanged in size to /dev/sdr
  • Oracle calls io_getevents to reap the results of the asynchronous I/O requests that have just been submitted and waits. The timeout.tv_sec field is set to 600, which indicates this is a blocking wait (which means io_getevents waits for 600 secs (tv_sec) and 0 nano secs (tv_nsec)) for min_nr=2 of IOs to finish. 
  • The block device interface returns the data upstream.
  • The io_getevents call returns the 2 I/O read.
  • The wait event interface marks the end of the wait. The wait event in this case is db file scattered read. 
    • The wait event parameters are: p1 is the file number, p2 in the block number, p3 is the number of blocks.
    • The wait event duration is basically the time is took to do the io_submit and io_getevents calls plus a small overhead.
    • Note that although Oracle has used the asynchronous interface, it has also waited for all the I/Os to complete therefore making the I/O essentially synchronous
  • From the calls to kcbzvb we get additional confirmation of the blocks that have been read.
  • Conclusion: the wait time for db file scattered read in this example is not a precise measure of the I/O latency, as two reads on two different devices where submitted in parallel and the total time was reported as if it was a single read.

 

Example 4: full scans with direct reads and asynchronous I/O

 

In this paragraph you can find two examples of Oracle I/O for the case of direct reads on block storage configured with ASM. The same query that was used in Examples 2 and 3 above is also used here: it is a query that performs a full table scan. In this example differently from Examples 2 and 3 Oracle uses serial direct read to access data. Serial direct read is a feature introduced in 11gR2 for optimizing full segment scan operations and bypassing the buffer cache layer, similarly to what happens with parallel queries. Oracle chooses when to use serial direct reads vs. cached reads based on a few parameters. In first approximation direct reads are preferred when the table is "big" compared to the size of buffer cache, the actual mechanism is more complex and can potentially change between Oracle versions. You can read more on this topic in this blog post by Tanel Poder.

For the particular setup I used to run this tests I had to force the use of serial direct reads before running the query, this was done with: alter session set "_serial_direct_read"=always; 

Note that alter session set "_serial_direct_read"=never; can be used to disable serial direct reads and force Oracle to use cached reads (that is the type of I/O you have seen in Example 2 and 3 above). The default value for the underscore parameter "_serial_direct_read" is "auto".

For the investigations in this example we can use a slightly different SystemTap probe from what we have used in the previous examples. I have removed tracing of logical I/O and block I/O for reducing cluttering and added a new probe on the userspace function io_getevents_0_4 of libaio (libaio is the Linux library that implements asynchronous I/O). This is because serial direct reads use non-blocking calls to reap I/Os and these calls are best traced at the libaio interface for reasons described by Frits Hoogland in this blog post. The SystemTap script represented in Figure 4a and 4b is: trace_oracle_wait_events_asyncio_libaio_12102.stp (a version for 11.2.0.4 is available at trace_oracle_wait_events_asyncio_libaio_11204.stp).

 

Figure 4a: Trace of the wait event and I/O calls of Oracle during a full table scan with serial direct read and asynchronous I/O, this is what happens in the first phases of the full scan

 

 

 

 

 

The key points of Figure 4a are:

  • Oracle requests I/O in chunks of contiguous storage space of 1MB. This is to reduce the overhead of seek time and potentially make use of readahead when available. 
    • The value of 1MB for the read request comes from the parameter db_file_multiblock_read_count=128 multiplied by the block size of 8 KB. 
    • Oracle submits one I/O of 1 MB with a call to io_submit and then calls io_getevents_0_4 in the libiao library using the non-blocking mode to try to reap the I/O. This happens twice, with no results. Oracle then submits another I/O of 1MB and tries for 4 times to reap I/O in non-blocking mode, with no results (the I/O operations have not yet finished).
    • The wait event timing starts just before the calls to io_getevents, which are used to reap the I/O results this time in blocking mode (with a timeout of 600 seconds)
      • The wait event in this case is: "direct path read"
      • Oracle reaps the two I/Os in two subsequent calls to io_getevents
    • After reaping the I/Os Oracle marks the end of wait for the event. 
    • The result is that 2 reads of 1 MB each have been performed 
    • The wait event interface does not report the correct number of I/Os performed:
      • the "direct path read" wait in this example reports one read of 128 blocks (1 MB), while 2 MB were read
    • The elapsed time for the wait event "direct path read" does not measure the I/O latency
      • Oracle is only timing the blocking calls to io_getevents, which start after the I/Os are submitted. 
      • Oracle is timing 2 reads together.

    The use of serial direct reads in Oracle is more complex than the simple example of Figure 4a. Frits Hoogland has discussed this in more details the internals of direct reads in Oracle in this presentation. In particular Oracle uses an adaptive mechanism for direct reads with the goal of driving the storage system to high throughput when possible. This is implemented by increasing the number of outstanding I/O when calling the asynchronous I/O interface. Internally this makes use of I/O slots. Note, from a comment on Oracle diagnostic event 10353 we have additional indirect information on this topic: "Slots are a unit of I/O and this factor controls the number of outstanding I/Os".

    Another finding of Frits' is that there are I/O operations performed for direct reads that are not timed by the wait event interface. This happens because Oracle can issue the io_getevents with timeout=0, that is reaping the I/O without having to block. You can see the these mechanisms in action in the trace of Figure 4b, which is for the same full scan as reported above in Figure 4a just at later time when the mechanism of adaptive serial direct reads has tuned Oracle I/O requests to be "more aggressive" on the use of storage resources.

     

    Figure 4b: Trace of the wait event and I/O calls of Oracle during a full table scan with serial direct read and asynchronous I/O, this is an example of what happens when the adaptive mechanism increases the number of outstanding I/Os for optimizing the throughput

     

    The key points of Figure 4b are:

    • This is the same full scan as shown in Figure 4a, the difference is that the trace in Figure 4b has been taken at a later time of the full scan operation (the table has 1 million blocks) when adaptive serial direct reads has increased the number of I/O slots (outstanding asynchronous I/O operations).
    • You can see that several io_submit operations are performed before the wait event timing is started. 
    • Oracle is trying to keep several outstanding I/Os in the queue: up to 9 outstanding asynchronous I/O operations can be seen in Figure 4b, while only 2 were present in simpler case of Figure 4a, that is at the beginning of the full scan.
    • Several attempts to reap I/Os with io_getevents operations are run by the Oracle process before the wait event timing is started
      • 2 reads of 1 MB each are reaped by one io_getevents call before the wait event timing has started, therefore these reads will not be accounted for in the wait event interface.
      • It is important to note that the timeout for this particular io_getevents call (as well as for the io_getevents_0_4 calls in libaio which have not returned any I/O) is set to 0 by the Oracle process, which means that Oracle does not wait for I/O results to be available, it will only reap them if they are available.
    • Between the moment at which Oracle starts timing the wait event "direct path read" and the end of the wait event 3 io_getevents operations have been performed (with the timeout set to 600, therefore blocking for I/O reads to be available) and a total of 9 reads of 1MB each are performed
      • The wait event interface does not report all the I/O that has been performed:
        • In the wait event parameters we can only find trace that 1 MB has been read (128 blocks), while in reality 9 MB have been read.
        • This is in addition to the 2 MB read outside of the wait event instrumentation.
      • The elapsed time for "db file direct read" does not accurately reflect I/O latency but rather the wait time for reaping I/Os as seen in Figure 4b.

    Example 5: asynchronous I/O for random reads

     

    Oracle will optimize single-block reads when it can do prefetching and/or batching of I/O. This is an optimization for random I/O using the asynchronous I/O interface, as Oracle can group multiple I/O requests in a single io_submit call, as opposed to sending them one after the other as in the case of Example 1, where the OS call pread was used. The example from Figure 5 comes from running Kevin Closson's SLOB on a 12c database. In the execution plan please note step 3 where Oracle uses the operation "TABLE ACCESS BY INDEX ROWID BATCHED" to access table data.

     

    Figure 5: execution plan for a SLOB query illustrating batch table access

     

    Here below in Figure 6 you can see a snippet of the Oracle I/O tracing when running the SLOB workload. You can see that the asynchronous I/O interface is being used to to perform random I/O. In the case of Figure 6, 126 requests are submitted in a single io_submit operation and subsequently reaped by io_getevents, waiting for all the requests to finish. The wait event in this case is "db file parallel read" and the calculated wait time is the time for the batch of 126 requests to finish. Therefore the wait time of db file parallel read wait does not provide an accurate measurement of the I/O latency for single block random reads.

     

    Figure 6: Oracle performing I/O for random reads with asynchronous I/Os, for the case of batched reads. The trace has been edited replacing a long list of similar trace lines (typically 126 lines only varying for the block#) with "..."

     

     

     

    Example 6: tracing DML

     

    In Figure 7 you can see a snippet of tracing Oracle logical I/O and wait events when inserting a row into a table followed by a commit. No physical I/O was performed in this operation (the table had been previously cached). You can see that most of the block reads have been done in current read mode, as expected for DML. Moreover the blocks involved are both belonging to the table being inserted (you can identify them in Figure 7 as belonging to tbs#=11) to rollback segments (you can identify them in Figure 7 as belonging to tbs#=2). Note that for simplicity the table in this example has no indexes.

     

    Figure 7: Logical I/O trace of Oracle performing and insert and commit operation

     

    Example 7: tracing log writer

    In Figure 8 you can see the trace of log writer during a commit operation. This is the same commit operation traced in Example 6 (see also Figure 7 above). The wait event is "log file parallel write" and its duration is timed by oracle from the beginning to the end of the asynchronous I/O operations performed. Therefore the measured wait event time "log file parallel write" is not an accurate measure of block write latency, as its duration depends on the number of operations performed. In the case of Figure 8 you can see that log writer writes to two distinct block devices, which is consistent with the use of 1 logfile member per redo log group, allocated on an ASM diskgroup with normal redundancy: log writer sends 2 write I/O requests simultaneously in order to write the primary and mirror extents of the logfile and waits for both of them to finish.

     

    Figure 8: log writer tracing during a commit operation

     

     

     

    Conclusions

    Dynamic tracing and in particular SystemTap provide the opportunity to investigate Oracle physical and logical I/O and open the way to drill-down investigations of Oracle's I/O into the various layer of the Oracle engine down to the Linux kernel layer. This post describes some of methods, tools and examples of how these investigations can be performed.

    The examples from real-world Oracle workloads highlight some of the most common cases of Oracle logical and physical I/O and the connections between the wait event interface and the O/S calls issued by Oracle processes. The Oracle wait event interface can provide useful data for measuring I/O latency and in general for troubleshooting I/O problems. This is true for random reads instrumented by the wait event "db file sequential read". The information provided by wait events related to asynchronous I/O, however, require additional attention: such events typically do not provide an accurate measure of the I/O latency. Moreover this post provides examples where some of the asynchronous I/Os for Oracle direct reads are not instrumented at all by the wait event interface.

     

    Acknowledgements: I would like to thank Tanel Poder and Frits Hoogland for original ideas that have inspired this work. Special thanks go to Frits Hoogland for providing comments and additional ideas from his deep expertise on the subject.

     

    Download the scripts:discussed in this post from the webpage with download material or from GitHub.

    You are here